Full Content is available to subscribers

Subscribe/Learn More  >

The Conductance Ratio Method for Off-Design Heat Exchanger Modeling and its Impact on an sCO2 Recompression Cycle

[+] Author Affiliations
Francesco Crespi, David Sánchez

University of Seville, Seville, Spain

Kevin Hoopes

Southwest Research Institute, San Antonio, TX

Brian Choi, Nicole Kuek

Alfa Laval CorHex Ltd, Daejeon, South Korea

Paper No. GT2017-64908, pp. V009T38A025; 11 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5096-1
  • Copyright © 2017 by ASME


This paper presents a method to evaluate the off-design performance of a heat exchanger without specifying detailed heat exchanger geometry. Presently, off-design heat exchanger performance evaluation is often done by assuming one of the terms in a lumped volume approach is constant (such as UA, temperature difference, ε etc.) or by producing a draft heat exchanger geometry to evaluate the local heat transfer coefficients in off-design operation.

As opposed to these approaches, the method presented in this paper manages to accurately predict off-design heat exchanger performance with very limited information. The method relies on a single parameter beyond the design operating conditions, namely the conductance ratio which is the product of heat transfer coefficient and area on both sides of the heat exchanger. The method is particularly powerful as it allows for the exploration of different off-design scenarios for a given on-design operating point.

The paper presents a theoretical introduction of the method along with a validation using data provided by BMPC and Alfa Laval for different types of heat exchangers and working fluids, including supercritical CO2. The method is then used to model the off-design performance of a simple recuperated sCO2 cycle, showing its ability to capture the off-design performance of a heat exchanger without specifying its detailed geometry and the impact of conductance ratio on off-design cycle performance.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In