0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Centrifugal Compressor Stage and a Radial-Inflow Turbine Stage for a Supercritical CO2 Recompression Brayton Cycle by Using 3D Inverse Design Method

[+] Author Affiliations
Jiangnan Zhang, Pedro Gomes, Benjamin Choo

Advanced Design Technology Ltd, London, UK

Mehrdad Zangeneh

University College London, London, UK

Paper No. GT2017-64631, pp. V009T38A023; 14 pages
doi:10.1115/GT2017-64631
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5096-1
  • Copyright © 2017 by ASME

abstract

It is found that the ideal gas assumption is not proper for the design of turbomachinery blades using supercritical CO2 (S-CO2) as working fluid especially near the critical point. Therefore, the inverse design method which has been successfully applied to the ideal gas is extended to applications for the real gas by using a real gas property lookup table. A fast interpolation lookup approach is implemented which can be applied both in superheated and two-phase regimes. This method is applied to the design of a centrifugal compressor blade and a radial-inflow turbine blade for a S-CO2 recompression Brayton cycle. The stage aerodynamic performance (volute included) of the compressor and turbine is validated numerically by using the commercial CFD code ANSYS CFX R162. The structural integrity of the designs is also confirmed by using ANSYS Workbench Mechanical R162.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In