Full Content is available to subscribers

Subscribe/Learn More  >

Response of a Compact Recuperator to Thermal Transients in a Supercritical Carbon Dioxide Brayton Cycle

[+] Author Affiliations
Eric M. Clementoni, Timothy L. Cox, Martha A. King

Naval Nuclear Laboratory, West Mifflin, PA

Paper No. GT2017-63058, pp. V009T38A002; 11 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5096-1
  • Copyright © 2017 by ASME


Supercritical carbon dioxide (sCO2) power cycle designs are typically highly recuperated, transferring heat from the high temperature turbine exhaust stream to the compressor discharge stream thereby increasing overall cycle efficiency. Compact heat exchangers are preferred for this application due to their high surface area-to-volume ratio enabling much smaller heat exchangers as compared to conventional designs. However, compact heat exchangers have a higher metal density than conventional heat exchangers which could result in thermal lag during rapid temperature transients.

The Naval Nuclear Laboratory has been operating the Integrated System Test (IST) with the objective of demonstrating the ability to operate and control an sCO2 Brayton power cycle over a wide range of conditions. Rapid turbomachinery startups and power transients result in thermal transients on the recuperator. This paper presents thermal transients observed in the IST recuperator during loop startup and power transients and illustrates the time to achieve thermal equilibrium following the transients.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In