0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Evaluation of a Hydraulic Turbine Used As a Turbodrill for Oil and Gas Applications in Post-Salt Environment

[+] Author Affiliations
V. G. Monteiro, J. T. Tomita, C. Bringhenti

Instituto Technológico de Aeronáutica, São José dos Campos, São Paulo, Brazil

A. Vastenavond

BG Group, Houston, TX

J. H. B. Sampaio, Jr.

Colorado School of Mines, Golden, CO

Paper No. GT2017-63456, pp. V009T27A012; 11 pages
doi:10.1115/GT2017-63456
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5096-1
  • Copyright © 2017 by ASME

abstract

Turbodrill is a type of hydraulic axial turbomachine that rotates a bit by the action of the drilling fluid on turbine blades, which converts the hydraulic power provided by the high pressure from drilling fluid into mechanical power through turbine stages. The evaluation of hydraulic turbine performance characteristics are important to define feasible rotational speed and mass flow to attend the bit torque requirements during drilling through the post-salt and salt layers. As a result, optimum operational parameters are proposed for gaining the required rotational speed and torque for post-salt environments. The turbine motor presented in this study was established by design methods based on classical aeronautical turbomachinery blade profile to supply 30k Newton-meters (Nm) of torque requested by a polycrystalline diamond compact (PDC) bit to power the complex heterogeneous layer of rock. The performance evaluation of this innovative hydraulic turbine with 200 stages was carried out using computational fluid dynamics (CFD). The simulation considers two different drilling fluid types, sea water and brine. Besides, different flow rates were considered to investigate how velocity vectors, pressure profile, output power and other performance parameters are affected. Due the large amount of data, the first and second stages of the turbine have been used to predict the performance characteristics. This assumption gives interesting results and avoids too heavy computational costs. A commercial CFD solver (ANSYS CFX 15.0®) was used to calculate the governing equations based on Reynolds-Averaged Navier-Stokes (RANS equations) with the addition of turbulence model. The two-equation Shear-Stress Transport (SST) turbulence model was used to account the effects of flow eddy viscosity.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In