0

Full Content is available to subscribers

Subscribe/Learn More  >

Study on the Regulation Boundary for Two-Stage Turbocharging System at Different Altitudes

[+] Author Affiliations
Huiyan Zhang, Mengyu Li, Lei Shi, Kangyao Deng

Shanghai Jiao Tong University, Shanghai, China

Hualei Li

AECC Commerical Aircraft Engine Co., Ltd., Shanghai, China

Paper No. GT2017-63923, pp. V008T26A013; 10 pages
doi:10.1115/GT2017-63923
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5095-4
  • Copyright © 2017 by ASME

abstract

Regulated two-stage (RTS) turbocharging system is an effective way to enhance power density and reduce pollutant of internal combustion engine for increasingly stringent demands of fuel consumption and emission regulation. Due to achieving high boost pressure with great system efficiency and controllable characteristic in wide working range, the RTS turbocharging system improves output power at low speed condition and reduces pumping loss at high speed condition. Composing of two turbochargers and control valves, the RTS turbocharging system is matched with engine at a design point and regulated by adjusting control valves to meet the engine requirement of intake pressure and flow at other working conditions. Calibration of the control valves under all operating conditions by plentiful experiments is significant for turbocharging system, particularly that matched with diesel engine for vehicle. Moreover, when an automobile run on the plateau, the intake air flow will decrease and combustion in cylinder will deteriorate obviously. Compared with other turbocharging system, two-stage turbocharging system is more suitable to the offset power loss of engine. Regulating boost system under different operation conditions draws more attention to engine performance recovery so that the workload of calibration raises rapidly in consideration of altitude factor. Though much work has been done in calibration at various altitudes, there are few, if any, discussion on open-closed boundary of control valves to simplify the calibration process. In this paper, it aims to present a regulation boundary model of control valve at different altitudes to guide the calibration and a series of experiments for RTS system can be saved. Firstly, a thermodynamics analysis of the RTS turbocharging system is conducted and typical regulation methods are compared in terms of the adjustment capacity and efficiency characteristics of turbocharging system, which indicates that high-stage turbine bypass is the optimum regulation method. Then, a regulation boundary model for the RTS turbocharging system at different altitudes is deduced, according to the relation of equivalent turbine area and engine operating condition. The regulation boundaries of different altitudes are obtained by iterative computation of the model, and the whole working mode of the RTS system is divided into a fully closed area and a regulated area. Experiments are carried out to verify the regulation boundary model at sea level condition. Brake torque, efficiency of the RTS system and temperature before high-stage turbine are primary parameters for verification in this article. The maximum error shows up with a value of 3.65% brake torque at 2200rpm. While a one-dimensional simulation model is built up to validate the regulation boundary model of the plateau. All the errors are smaller than 3% at various altitudes. It results that model is accurate enough to predict the regulation boundary of the RTS system. By the calculation of regulation boundary model, the brake torque at regulation boundary will decrease if the engine speeds up. It also manifests that fully closed area will argument if the automobile climbs up to high operating altitude, especially under high speed condition.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In