0

Full Content is available to subscribers

Subscribe/Learn More  >

Aerodynamic Excitation Analysis of Radial Turbine Blades due to Unsteady Flow From Vaneless Turbine Housings

[+] Author Affiliations
Stephan Netzhammer, Stephan Kraetschmer, Johannes Leweux, Andreas Koengeter

Daimler AG, Stuttgart, Germany

Damian M. Vogt

University of Stuttgart, Stuttgart, Germany

Paper No. GT2017-64468, pp. V07BT36A015; 11 pages
doi:10.1115/GT2017-64468
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0
  • Copyright © 2017 by ASME

abstract

Turbocharger turbine blades are subjected to resonant excitation that can lead to High Cycle Fatigue (HCF). In vaneless turbines the excitation primarily stems from asymmetries in the turbine housing such as the volute and the tongue. Given the nature of such asymmetries, the excitation is of a Low Engine Order (LEO) type.

The present study deals with the effect of radial turbine housing design on LEO resonant excitation of turbine blades. The study focuses on two geometrical key design parameters of a twin-scroll turbine housing for a radial turbine which is the rotor-tongue distance and the circumferential angle between both tongues. The generalized force approach is used to identify the critical blade surface regions in order to understand the excitation mechanism of each specific design and to assess the differences of design variants with respect to the baseline design. The presented approach is highly practicable, because it is less expensive than full FSI-simulations.

This approach is validated on tip timing test data from full-scale experiments. Correlation to test data shows that the presented approach is capable of capturing the relative trends reliably and hence can efficiently be employed in an industrial design process such as to minimize blade vibration amplitudes. It is shown that a reduction of blade vibration amplitudes by a factor of 10 could be achieved.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In