0

Full Content is available to subscribers

Subscribe/Learn More  >

Resonance Frequency Detuning With Application Towards Blade Mistuning

[+] Author Affiliations
Garrett K. Lopp, Jeffrey L. Kauffman

University of Central Florida, Orlando, FL

Paper No. GT2017-64973, pp. V07BT35A030; 10 pages
doi:10.1115/GT2017-64973
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0
  • Copyright © 2017 by ASME

abstract

This paper extends the Resonance Frequency Detuning vibration reduction approach by analyzing the performance in cases of turbomachinery blade mistuning. A lumped parameter mistuned blade model with included piezoelectric elements is utilized and an analytical solution for frequency sweep excitation is presented and validated using direct numerical integration. A Monte Carlo statistical analysis is then conducted to provide insight regarding vibration reduction performance over a range of parameters of interest such as the degree of blade mistuning, linear excitation sweep rate, damping ratio, and the difference between the open- and short-circuit stiffness states. Vibration reduction is shown to exist across all degrees of blade mistuning as well as the entire range of sweep rates tested. This vibration reduction performance is also maximized for systems with low inherent damping and large electromechanical coupling values.

Copyright © 2017 by ASME
Topics: Resonance , Blades

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In