Full Content is available to subscribers

Subscribe/Learn More  >

Reduced Order Modeling for Multi-Stage Bladed Disks With Friction Contacts at the Flange Joint

[+] Author Affiliations
Giuseppe Battiato, Christian M. Firrone, Teresa M. Berruti

Politecnico di Torino, Torino, Italy

Bogdan I. Epureanu

University of Michigan, Ann Arbor, MI

Paper No. GT2017-64814, pp. V07BT35A027; 13 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0
  • Copyright © 2017 by ASME


Most aircraft turbojet engines consist of multiple stages coupled by means of bolted flange joints which potentially represent source of nonlinearities due to friction phenomena. Methods aimed at predicting the forced response of multi-stage bladed disks have to take into account such nonlinear behavior and its effect in damping blades vibration. In this paper a novel reduced order model is proposed for studying nonlinear vibration due to contacts in multi-stage bladed disks. The methodology exploits the shape of the single-stage normal modes at the inter-stage boundary being mathematically described by spatial Fourier coefficients. Most of the Fourier coefficients represent the dominant kinematics in terms of the well-known nodal diameters (standard harmonics), while the others, which are detectable at the inter-stage boundary, correspond to new spatial small wavelength phenomena named as extra harmonics. The number of Fourier coefficients describing the displacement field at the inter-stage boundary only depends on the specific engine order excitation acting on the multi-stage system. This reduced set of coefficients allows the reconstruction of the physical relative displacement field at the interface between stages and, under the hypothesis of the Single Harmonic Balance Method, the evaluation of the contact forces by employing the classic Jenkins contact element. The methodology is here applied to a simple multi-stage bladed disk and its performance is tested using as a benchmark the Craig-Bampton reduced order models of each single-stage.

Copyright © 2017 by ASME
Topics: Friction , Flanges , Modeling , Disks



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In