Full Content is available to subscribers

Subscribe/Learn More  >

A Computational Fluid Dynamics Modified Bulk Flow Analysis for Circumferentially Shallow Grooved Liquid Seals

[+] Author Affiliations
Luis San Andrés, Tingcheng Wu

Texas A&M University, College Station, TX

Hideaki Maeda, Ono Tomoki

Torishima Pump MFG. Co., Ltd., Takatsuki City, Osaka, Japan

Paper No. GT2017-63492, pp. V07AT34A011; 10 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7A: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5092-3
  • Copyright © 2017 by ASME


In straight-through centrifugal pumps, a grooved seal acts as a balance piston to equilibrate the full pressure rise across the pump. As the groove pattern breaks the development of fluid swirl, this seal type offers lesser leakage and lower cross-coupled stiffnesses than a similar size and clearance annular seal. Bulk-flow models predict expediently the static and dynamic force characteristics of annular seals; however they lack accuracy for grooved seals. Computational fluid dynamics (CFD) methods give more accurate results, but are not computationally efficient. This paper presents a modified bulk-flow model to predict the rotordynamic force coefficients of shallow depth circumferentially grooved liquid seals with an accuracy comparable to a CFD solution but with a simulation time of bulk-flow analyses. The procedure utilizes the results of CFD to evaluate the bulk flow velocity field and the friction factors for a 73 grooves annular seal (depth/clearance dg/ Cr = 0.98 and length/diameter L/D = 0.9) operating under various sets of axial pressure drop and rotor speed. In a groove, the flow divides into a jet through the film land and a strong recirculation zone. The penetration angle (α), specifying the streamline separation in the groove cavity, is a function of the operating conditions; an increase in rotor speed or a lower pressure difference increases α. This angle plays a prominent role to evaluate the stator friction factor and has a marked influence on the seal direct stiffness. In the bulk-flow code the friction factor model (f = nRem) is modified with the CFD extracted penetration angle (α) to account for the flow separation in the groove cavity. The flow rate predicted by the modified bulk-flow code shows good agreement with a measured result (6% difference). A perturbation of the flow field is performed on the bulk-flow equations to evaluate the reaction forces on the rotor surface. Compared to the rotordynamic force coefficients derived from the CFD results, the modified bulk-flow code predicts rotordynamic force coefficients within 10%, except that the cross-coupled damping coefficient is over-predicted up to 14%. An example test seal with a few grooves (L/D = 0.5, dg/Cr = 2.5) serves to further validate the predictions of the modified bulk-flow model. Compared to the original bulk-flow analysis, the current method shows a significant improvement in the predicted rotordynamic force coefficients, the direct stiffness and damping coefficients in particular.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In