Full Content is available to subscribers

Subscribe/Learn More  >

Towards Investigation of External Oil Flow From a Journal Bearing in an Epicyclic Gearbox

[+] Author Affiliations
Martin Berthold, Hervé Morvan, Richard Jefferson-Loveday

University of Nottingham, Nottingham, UK

Colin Young

Rolls-Royce plc, Derby, UK

Paper No. GT2017-63451, pp. V07AT34A010; 11 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7A: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5092-3
  • Copyright © 2017 by Rolls-Royce plc


High loads and bearing life requirements make journal bearings the preferred choice for use in high power, epicyclic gearboxes in jet engines. In contrast to conventional, non-orbiting journal bearings in epicyclic star gearboxes, the kinematic conditions in epicyclic planetary arrangements are much more complex. With the planet gears rotating about their own axis and orbiting around the sun gear, centrifugal forces generated by both motions interact with each other and affect the external flow behavior of the oil exiting the journal bearing.

This paper presents a literature and state-of-the-art knowledge review to identify existing work performed on cases similar to external journal bearing oil flow. In order to numerically investigate external journal bearing oil flow, an approach to decompose an actual journal bearing into simplified models is proposed. Later, these can be extended in a step-wise manner to allow key underlying physical phenomena to be identified. Preliminary modeling considerations will also be presented. This includes assessing different geometrical inlet conditions with the aim of minimizing computational requirements and different numerical models for near-wall treatment. The correct choice of near-wall treatment models is particularly crucial as it determines the bearing’s internal and external thermal behavior and properties. The findings and conclusions are used to create a three dimensional (3D), two-component computational fluid dynamic (CFD) sector model with rotationally periodic boundaries of the most simplistic approximation of an actual journal bearing: a non-orbiting representation, rotating about its own axis, with a circumferentially constant, i.e. concentric, lubricating gap. The inlet boundary conditions for simulating the external oil flow are generated by partly simulating the internal oil flow within the lubricating gap. In order to track the phase interface between the oil and the air surrounding the bearing, the Volume of Fluid (VoF) method is used. The quality of the CFD simulations of the domain of interest is not only dependent on the accuracy of the inlet conditions, but is also dependent on the computational mesh type, cell count, cell shape and numerical methods used. External journal bearing oil flow was simulated with a number of different mesh densities and the effect on the flow field behavior will be discussed. Two different operating temperatures, representing low and high viscosity oil, were used and their effect on the flow field behavior will also be assessed.

In order to achieve the future objective of creating a design tool for routine use, key areas will be identified in which further progress is required. This includes the need to progressively increase the model fidelity to eventually simulate an orbiting journal bearing in planetary configuration with an eccentric, i.e. convergent-divergent, lubricating gap.

Copyright © 2017 by Rolls-Royce plc



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In