0

Full Content is available to subscribers

Subscribe/Learn More  >

Sensitivity Analysis of the One-Control Volume Bulk-Flow Model for a 14 Teeth-on-Stator Straight-Through Labyrinth Seal

[+] Author Affiliations
Filippo Cangioli, Paolo Pennacchi, Giacomo Riboni, Andrea Vania, Steven Chatterton

Politecnico di Milano, Milan, Italy

Giuseppe Vannini

GE Oil&Gas, Florence, Italy

Lorenzo Ciuchicchi

GE Oil&Gas, Le Creusot, France

Paper No. GT2017-63014, pp. V07AT34A002; 12 pages
doi:10.1115/GT2017-63014
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7A: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5092-3
  • Copyright © 2017 by ASME

abstract

Since the 80s, academic research in the rotordynamics field has developed mathematical treatment for the prediction of the dynamic coefficients of sealing components. Dealing with the straight-through labyrinth seal, Iwatsubo [1], at a first stage, and Childs [2], later on, have developed the one-control volume bulk flow model. The model allows evaluating the surrounding fluid forces acting on the rotor, analyzing the fluid dynamics within the seal: the continuity, circumferential momentum and energy equations are solved for each cavity. To consider axial fluid dynamics, correlations, aiming to estimate the leakage and the pressure distribution, are required. Several correlations have been proposed in the literature for the estimation of the leakage, of the kinetic energy carry-over coefficient (KE), of the discharge coefficient and of the friction factor.

After decades of research in the field of seal dynamics, the bulk-flow model has been confirmed as the most popular code in the industries, however, it is not clear which is the best set of correlations for the prediction of seal dynamic coefficients.

This paper allows identifying the most accurate combination of correlations to be implemented in the bulk-flow model. The correlations are related to: the leakage formula, the flow coefficient, the KE and the friction factor. Investigating the results of several models (32 models), which consider different sets of correlations, in comparison to the experimental data (performed by General Electric Oil & Gas), it is possible to observe the dependence, of the model correlations, on the operating conditions.

The experimental results, performed using a 14 teeth-on-stator labyrinth seal, investigate several operating conditions of pressure drop.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In