Full Content is available to subscribers

Subscribe/Learn More  >

Application of 3D Fracture Mechanics for Improved Crack Growth Predictions of Gas Turbine Components

[+] Author Affiliations
Kanwardeep S. Bhachu, Sachin R. Shinde, Phillip W. Gravett

Siemens Energy, Inc., Orlando, FL

Santosh B. Narasimhachary

Siemens Corporate Technology, Charlotte, NC

Paper No. GT2017-64890, pp. V07AT31A016; 8 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7A: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5092-3
  • Copyright © 2017 by Siemens Energy, Inc.


Fracture mechanics analysis is essential for demonstrating structural integrity of gas turbine components. Usually, analyses based on simpler 2D stress intensity solutions provide reasonable approximations of crack growth. However, in some cases, simpler 2D solutions are too-conservative and does not provide realistic crack growth predictions; often due to its inability to account for actual 3D geometry, and complex thermal-mechanical stress fields. In such cases, 3D fracture mechanics analysis provides extra fidelity to crack growth predictions due to increased accuracy of the stress intensity factor calculations. Improved fidelity often leads to benefits for gas turbine components by reducing design margins, improving engine efficiency, and decreasing life cycle costs.

In this paper, the application of 3D fracture mechanics analysis on a gas turbine blade for predicting crack arrest is presented. A comparison of stress intensity factor values from 3D and 2D analysis is also shown. The 3D crack growth analysis was performed by using FRANC3D in conjunction with ANSYS.

Copyright © 2017 by Siemens Energy, Inc.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In