0

Full Content is available to subscribers

Subscribe/Learn More  >

A Low Cycle Fatigue Life Prediction Model of Single Crystal Nickel-Based Superalloys Using Critical Plane Approach Combined With Crystallographic Slip Theory

[+] Author Affiliations
Lijuan Mu, Xuezhi Dong, Qing Gao, Yongsheng Tian, Chunqing Tan

Chinese Academy of Sciences, Beijing, China

Paper No. GT2017-64598, pp. V07AT31A013; 7 pages
doi:10.1115/GT2017-64598
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7A: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5092-3
  • Copyright © 2017 by ASME

abstract

The anisotropy is the most remarkable characteristic for single crystal nickel-based superalloys, which makes fatigue behavior and life prediction highly correlate with the crystallographic orientation. Based on critical plane approach and preferred crystallographic slip mechanism, an anisotropic LCF life model is proposed to account for orientation-dependent fatigue life in this paper. In addition, the effects of the mean stress and stress-weakening caused by asymmetric loading are also considered. The critical plane is determined by searching for 30 potential slip systems. Moreover, the slip plane with the maximum resolved shear stress amplitude in the crystallographic microstructure of the single crystal nickel-based superalloy is chosen as the critical plane.

The LCF test data are utilized to obtain the regression equation by multiple linear fitting method. The presented LCF life model is applicable for more complex stress state and has higher prediction accuracy than the CDY model.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In