0

Full Content is available to subscribers

Subscribe/Learn More  >

Innovative Design of Attachment for Turbine Blade Rotating at High Speed

[+] Author Affiliations
D. Botto, F. Alinejad

Politecnico di Torino, Torino, Italy

Paper No. GT2017-64959, pp. V07AT30A007; 10 pages
doi:10.1115/GT2017-64959
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7A: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5092-3
  • Copyright © 2017 by ASME

abstract

There is evidence of a lack of knowledge in the design of the blade/disk attachment so that the strength of the materials is not fully exploited and the load capability of the attachment is underestimated. The aim of this work is to improve the engineers’ capability in designing the attachment so that higher loads can be carried with the same material. To this end, an optimization method has been applied to the attachment design. A dovetail blade root was chosen as case study and the objective function was the static equivalent stress in the blade and the disc. The dovetail was described by variable parameters under geometrical and physical constraints. Optimization was performed with a Genetic Algorithm (GA). The result of the optimization procedure is the optimal set of parameter values that minimizes the equivalent stress on the critical areas. Moreover, a surrogate function was utilized as a booster to the GA to save computational time. Stress analysis was performed with a commercial Finite Element (FE) software to provide the exact fitness value. An in-house code was developed to manage both the optimization process and the input/output interface with the FE software. The same code provides a decision-making core. This core checks for feasibility of the geometry of the current set of parameters. The expected result is an optimized profile in terms of Von-Misses equivalent stress.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In