Full Content is available to subscribers

Subscribe/Learn More  >

Multiple-Model Adaptive Control of a Hybrid Solid Oxide Fuel Cell Gas Turbine Power Plant Simulator

[+] Author Affiliations
Alex Tsai

United States Coast Guard Academy, New London, CT

Paolo Pezzini, Kenneth M. Bryden

Iowa State University, Ames, IA

David Tucker

National Energy Technology Laboratory, Morgantown, WV

Paper No. GT2017-64987, pp. V006T05A036; 9 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5091-6
  • Copyright © 2017 by ASME


A Multiple Model Adaptive Control (MMAC) methodology is used to control the critical parameters of a Solid Oxide Fuel Cell Gas Turbine (SOFC-GT) cyberphysical simulator, capable of characterizing 300kW hybrid plants. The SOFC system is comprised of a hardware Balance of Plant (BoP) component, and a high fidelity FC model implemented in software. This study utilizes empirically derived Transfer Functions (TF) of the BoP facility to derive the multi model adaptive controller (MMAC) gains for the BoP system, based on an estimation algorithm which identifies current operating points. The MMAC technique is useful for systems having a wide operating envelope with nonlinear dynamics. The practical implementation of the adaptive methodology is presented through simulation in the MATLAB/SIMULINK environment.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In