0

Full Content is available to subscribers

Subscribe/Learn More  >

Gas Thermometry Using Two-Thermocouple Radiation Correction

[+] Author Affiliations
Christopher Martin

Pennsylvania State University, Altoona, PA

Stephen LePera

Consulting Engineer, Blacksburg, VA

Uri Vandsburger

Virginia Tech, Blacksburg, VA

Paper No. GT2017-64513, pp. V006T05A024; 10 pages
doi:10.1115/GT2017-64513
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5091-6
  • Copyright © 2017 by ASME

abstract

The current work is the first in a series of investigations to develop a method for high-temperature thermometry of gaseous flows using thermocouple pairs with disparate convective properties to infer the contribution of radiation. Two thermocouples of deliberately dissimilar bead geometry are placed side-by-side in a flow while the two beads are heated by surface radiation. Their dissimilar responses to radiation cause a predictable divergence between the two temperature measurements.

The current approach improves upon others found in literature owing to its in-situ measurement for convection coefficients rather than dependence on empirical estimation. Each bead is deliberately overheated, and the time constant of the thermal decay back to equilibrium indicates the intensity of convection. Here, we perform this measurement in air while varying velocity, duration of overheat, and intensity of overheat. We compare the calculated temperature correction against the known air temperature.

Heat transfer through the probe wires to the ceramic probe support was found to have a strong effect on the correction, although corrected values were always closer to the actual gas temperature than the original uncorrected value. In conditions of mild radiation loading, the effect was sufficiently symmetric between the two beads to allow effective correction. All measurements indicated that if additional information about the probe body temperature was collected in addition to the thermocouple measurements, the correction could be improved significantly.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In