0

Full Content is available to subscribers

Subscribe/Learn More  >

Turbine Vane Endwall Film Cooling Study From Axial-Row Configuration With Simulated Upstream Leakage Flow

[+] Author Affiliations
Nafiz H. K. Chowdhury, Chao-Cheng Shiau, Je-Chin Han

Texas A&M University, College Station, TX

Luzeng Zhang, Hee-Koo Moon

Solar Turbines Inc., San Diego, CA

Paper No. GT2017-63144, pp. V05CT19A003; 12 pages
doi:10.1115/GT2017-63144
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5089-3
  • Copyright © 2017 by ASME

abstract

Endwall film cooling can be greatly improved if the leakage coolant flow from the upstream gap between the combustor and vane endwall is effectively engaged. In this study, such a full coverage film cooling design, called axial-row configuration, is considered and the performance is studied by measuring the film cooling effectiveness distribution using PSP technique. Experiments were performed in a blow-down wind tunnel cascade facility at the isentropic exit Mach number of 0.5 corresponding to inlet Reynolds number of 3.8 × 105, based on the axial chord. Passive turbulence grid was used to generate freestream turbulence level about 19 % with a length scale of 1.7 cm. The results are presented as two-dimensional film cooling effectiveness distributions on the endwall surface with pitchwise averaged distributions in the axial direction. The focus of this study is evaluating the effect of coolant-to-mainstream mass flow ratio (MFR) and density ratio (DR) on a particular endwall cooling design. Increasing coolant amount for the upstream leakage exhibited increased local adiabatic cooling effectiveness levels with relatively uniform coverage area. However, the passage cooling was not improved at highest coolant MFR = 1.5% rather indicated an optimum value of MFR = 1% based on better coolant coverage on the endwall surface. For density ratio effect, results indicated the best performance at DR = 1.5.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In