Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Investigation of the Mutual Interaction Between Liner Film Cooling and Combustor Swirl Flow

[+] Author Affiliations
Antonio Andreini, Riccardo Becchi, Bruno Facchini, Lorenzo Mazzei, Alessio Picchi

University of Florence, Firenze, Italy

Ignazio Vitale

GE Avio S.r.l., Rivalta di Torino, Italy

Anil Tolpadi

GE Aviation, Cincinnati, OH

Paper No. GT2017-63460, pp. V05CT17A003; 13 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5089-3
  • Copyright © 2017 by ASME


In the continuous demand of increasing cooling efficiency for novel combustor liners, it is necessary to have a comprehensive understanding of the interaction of hot gases with coolant flows. The aim of the present study is the experimental characterization of the flow field and the measurement of liner heat transfer coefficient in a combustion chamber model equipped with an axial swirler and a liner slot cooling scheme.

The test rig geometry consists in a linear three sector chamber fed by an open loop blower. The system is operated at isothermal conditions. A highly swirled main stream flow is achieved by considering an injector geometries that produce flow structures which interact with film cooling flow delivered by a simplified slot at the inner wall of the liner. To study the effects of this mutual interaction, the flow field and the liner heat transfer are investigated at different slot cooling and injector flow rates.

A 2D PIV (Particle Image Velocimetry) technique is employed to investigate the test section flow field on two different planes. An experimental campaign focused on liner heat transfer measurement is carried out using a TLC (Thermochromic Liquid Crystals) steady state technique with a thin Inconel heating foil fed by two copper bus bars.

Results obtained indicate an appreciable role of film cooling flow on both swirler aerodynamics and the liner heat transfer coefficient. When the slot cooling flow rate is increased, the observed peak of heat transfer coefficient, due to liner-swirl flow interaction, gradually reduces. This is a consequence of a reduction in swirling jet expansion when slot cooling is increased, which also affects the amount of flow recirculation due to vortex breakdown.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In