0

Full Content is available to subscribers

Subscribe/Learn More  >

A New Heat Transfer Correlation for Supercritical RP-3 Flowing in Vertical Tubes

[+] Author Affiliations
Longyun Wang, Zhi Tao, Jianqin Zhu, Haiwang Li, Zeyuan Cheng

Beihang University, Beijing, China

Paper No. GT2017-63908, pp. V05BT22A009; 10 pages
doi:10.1115/GT2017-63908
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5088-6
  • Copyright © 2017 by ASME

abstract

A new empirical correlation for upward flowing supercritical aviation kerosene RP-3 in the vertical tubes is proposed. In order to obtain the database, numerical simulation with a four-component surrogate model on RP-3 and LS low Reynolds turbulence model in vertical circular tube has been performed. Tubes of diameter 2mm to 10mm are studied and operating conditions cover pressure from 3MPa to 6MPa. Heat flux is 500KW/m2, mass flow rate is 700kg/(m2·s). The numerical results on wall temperature distribution under various conditions are compared with experimental data and a good agreement is achieved. The existing correlations are summarized and classified into three categories. Three representative correlations of each category are selected out to evaluate the applicability in heat transfer of supercritical RP-3. The result shows that correlations concluded from water and carbon-dioxide do not perform well in predicting heat transfer of hydrocarbon fuel. The mean absolute deviation of them is up to 20% and predict about 80% of the entire database within 30% error bands. So a new correlation which is applicable to different working conditions for supercritical RP-3 is put forward. Gnielinski type has been adapted as the basis of the new correlation for its higher accuracy. In consideration of major influence factors of supercritical heat transfer, correction terms of density and buoyancy effect are added in. The new correlation has a MAD of 9.26%, predicting 90.6% of the entire database within ±15% error bands. The comparisons validate the applicability of the new correlation.

Copyright © 2017 by ASME
Topics: Heat transfer

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In