0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance of Adaptive Lubricants in a Hybrid Journal Bearing Operating Under Fully Saturated Conditions

[+] Author Affiliations
Ssu-Ying Chien, Mark Cramer, Gen Fu, Alexandrina Untaroiu

Virginia Tech, Blacksburg, VA

Paper No. GT2017-64530, pp. V05BT15A027; 10 pages
doi:10.1115/GT2017-64530
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5088-6
  • Copyright © 2017 by ASME

abstract

Adaptive lubricants involve binary mixture of synthetic oil and dissolved carbon dioxide (CO2). Unlike conventional lubricant oils, the lubricant viscosity not only varies with the temperature within the bearing, but also can be directly adjusted through the CO2 concentration in the system. In this study, we investigated the performance of adaptive lubricants in a hybrid journal bearing considering the synthetic oil to be fully saturated by CO2. The adaptive lubricant analyzed for this study was the polyalkylene glycol (PAG) oils with low concentration of CO2 (< 30%). A three-dimensional computational fluid dynamic (CFD) model of the bearing was developed and validated against the experimental data. The mixture composition and the resultant mixture viscosity were calculated as a function of pressure and temperature using empirical equations.

The simulation results revealed that the viscosity distribution within the PAG/CO2-lubricated bearing is determined primarily by the pressure at the low operating speed. When the speed becomes higher, it is the temperature effect that dominates the viscosity distribution within the bearing. Moreover, the PAG/CO2-lubricated bearing can reduce up to 12.8% power loss than the PAG-lubricated bearing due to the low viscosity of PAG/CO2 mixture. Most importantly, we have found the PAG/CO2 can enhance the load capacity up to 19.6% when the bearing is operating at the high speed conditions.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In