0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Analysis of the Secondary Flow Across the Interphase Balance Drum of a High Pressure Back-to-Back Centrifugal Compressor

[+] Author Affiliations
Carmine Carmicino, Francesco Maiuolo, Emanuele Rizzo

GE Oil & Gas, Florence, Italy

Paper No. GT2017-64427, pp. V05BT15A023; 9 pages
doi:10.1115/GT2017-64427
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5088-6
  • Copyright © 2017 by ASME

abstract

With the major aim of gathering information on the machine lateral stability in high pressure-high density conditions, and of assessing the prediction capabilities of the in-house design tools and overall process, a back-to-back centrifugal compressor has been instrumented and tested in several operating conditions. The present paper focuses on the secondary flows across the interphase balance drum of the back-to-back compressor, where the sealing is accomplished with a honeycomb seal. The compressor interphase section has been instrumented with dedicated special probes for the clearance measurement associated to pressure and flow angle probes in order to characterize pressure distributions and swirl variations depending on the specific operating range. The experimental data acquired over the machine operation have been compared with a three-dimensional steady-state numerical analysis results obtained from the simulation, carried out with a Reynolds averaged Navier-Stokes (RANS) approach, of the flowfield in the complex interphase secondary system composed by the impeller cavities and the honeycomb seal. This paper addresses the comparison between numerical results and experimental data, which allowed the matching of models with experiments in terms of pressure distribution and the complex flowfield. Finally, all the data have been used to validate an in-house one-dimensional flow network solver for pressure distribution and leakage flow calculations along cavities and seals. Results have shown a general good agreement between measured data and calculation output. In particular, computational fluid dynamic analysis provided detailed pressure and velocity distributions that allowed gaining insight in the physics of such a complex region. The one-dimensional model has been demonstrated to be a fast and reliable tool to well predict local pressure variations inside cavities and seals and, consequently, the residual axial thrust.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In