Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Rotor Disc Growth on Flow and Heat Transfer Characteristics of Rim Seal

[+] Author Affiliations
Xingyun Jia, Qun Zheng, Hai Zhang, Yuting Jiang

Harbin Engineering University, Harbin, China

Paper No. GT2017-64169, pp. V05BT15A019; 10 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5088-6
  • Copyright © 2017 by ASME


Under actual operating conditions of gas turbine, centrifugal and thermal growth of disc in radial direction result in dislocation of inflow boundary at the disc mid-radius height, and a radial step of platform at high radius height. In this paper, flow and heat transfer characteristics in dislocated rim seal region are analyzed by the conjugate and thermal mechanical numerical methods.

The calculated radial growths of turbine discs reach approximately 14–20 % of turbine platform structure thickness. Dislocation of rim seal structure directly affects the flow characteristic of externally-induced (EI) ingress and rotationally-induced (RI) ingress, and aggravates overheat of stator disc due to induced hot gas ingestion, further affects the loss of mixture of mainstream gas and cooling sealant air flow in rim-seal and wheelspace regions. Radial step between rotor and stator platforms exacerbates the area and depth of hot gas ingestion in seal clearance, along with a 2–7 % decrease in seal efficiency.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In