Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulations of Flow Fields and Heat Transfer Characteristics in Tenon Joint Gap Between Turbine Blade and Disk Under Rotating Conditions

[+] Author Affiliations
Da-wei Chen, Hui-ren Zhu, Yang Xu, Xiao-meng Jia, Cong Liu

Northwestern Polytechnical University, Xi’an, China

Hai-ying Lu

AVIC Shenyang Aircraft Engine Design Institute, Xi’an, China

Paper No. GT2017-63951, pp. V05BT15A017; 11 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5088-6
  • Copyright © 2017 by ASME


Turbine blades and the disks are connected by tenons. There is a pair of jagged assembly clearance between each tenon and corresponding mortise. In practical engineering applications, flow and heat transfer characteristics in assembly clearance used to be simplified. In order to obtain more accurate temperature fields of the turbine blades and disks, detailed study of the flow and heat transfer mechanism in tenon joint gap is necessary.

In this paper, two typical assembly clearances under the stationary and rotating conditions were investigated numerically, including double S-shaped and double Crescent-shaped. The inlet Reynolds numbers range from 5,500 to 50,000 and the Rotation numbers range from 0 to 0.005. The results show that the fluids in the two branches of the double S-shaped channel have different flow characteristics under rotating conditions. A vortex is formed at the corner of the left branch and the vortex scale can be influenced by Re and Ro. The large vortex decreases the local heat transfer coefficient. In the right branch, the three-dimensional flow from the flat wall to the concave wall increases the local heat transfer coefficient of different regions. For the double Crescent-shaped channel, the region with higher velocity is offset to the right of the channel which leads to higher local heat transfer coefficient under rotating conditions. The simulation results have great significance to the heat transfer analysis of turbine blades and disks.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In