0

Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady 360 Computational Fluid Dynamics Validation of a Turbine Stage Mainstream/Disc Cavity Interaction Using Lattice-Boltzmann Method

[+] Author Affiliations
A. V. Mirzamoghadam, K. Molla-Hosseini

Honeywell International Aerospace Engineering and Technology, Phoenix, AZ

I. Gonzalez-Martino, F. Polidoro

Exa Corporation, Paris, France

Paper No. GT2017-63841, pp. V05BT15A014; 11 pages
doi:10.1115/GT2017-63841
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5088-6
  • Copyright © 2017 by ASME

abstract

This paper is a continuation of a previous comparison dealing with URANS-based validation of the ASU-Honeywell turbine stage mainstream/disc-cavity interaction rig data. Here, the validation is with a CFD code named PowerFLOW which is based on the Lattice Boltzmann Method (or LBM). Transient LBM simulations were conducted across the previously published purge flows (Cw of 1540 to 6161), and at the higher mainstream flow condition of 2300 cfm (1.086m3/s). Sensitivity of convergence on results was investigated by increasing the number of revolutions, as well as by varying the passive scalar and temperature difference assumptions between mainstream and purge flow. Results indicate that at lower purge flow, LBM was able to significantly improve validation of sealing effectiveness measurements. For the intermediate purge flows, however, there is a departure from what the data shows. Finally, at the higher purge flow cases, LBM prediction improves at the outer radial location as compared to URANS. Moreover, on pressure validation, it has closed the gap in matching the measured steady pressures inside the lower disc cavity except at the highest purge flow. In the critical upper rim cavity, the gap between the two methods closes as purge flow increases. The outcome from this comparative tool validation study is that at the low critical purge flow case where ingestion is most critical as well as at the upper rim cavity location, sealing effectiveness predictions were significantly improved. The paper also discusses the current limitations of LBM.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In