0

Full Content is available to subscribers

Subscribe/Learn More  >

A Rim Seal Ingress Model Based on Turbulent Transport

[+] Author Affiliations
Svilen S. Savov, Nicholas R. Atkins

University of Cambridge, Cambridge, UK

Paper No. GT2017-63531, pp. V05BT15A009; 14 pages
doi:10.1115/GT2017-63531
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5088-6
  • Copyright © 2017 by ASME

abstract

Recent experimental work from the present authors demonstrated that interactions between the mainstream and cavity/rim seal flows lead to ingestion mechanisms with a range of length scales. In addition to the (well known) effect of the vane and blade pressure fields, it was demonstrated that the shear layer instabilities between the mainstream and rim seal flows can affect ingress. Building upon these observations and the understanding in the literature, this paper presents a model which relates rotor-stator cavity seal effectiveness to purge flow rate based on turbulent transport. The main assumption is that all length scales of ingress lead to an effective eddy diffusivity. This eddy diffusivity drives ingress across the seal concentration gradient. Following Prandtl’s mixing length hypothesis for eddy viscosity, the model uses an empirical constant representing an equivalent mixing length. This assumption is shown to be sufficient across a limited range of dimensionless flow rates. An extension of the model is presented to account for the reduction in turbulent mixing in the rim seal recirculation region as it becomes washed out with increasing purge flow. The rate at which the effect of the rim seal recirculation region gets washed out is modelled with a purge-to-mainstream blowing ratio term and the volume fraction of the seal occupied by the rim seal recirculation. The differences in volume fraction and blowing ratio between the different experiments in literature are defined by the geometry and flow condition only. By fitting, it is shown that the model is sufficient to capture a wide variety of experimental data in the literature and that of the present authors. The results and the model derivation provide an encouraging first step and a framework towards a model that is sensitized to both geometry and flow conditions.

Copyright © 2017 by ASME
Topics: Turbulence

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In