0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of the Influence of Geometric Structure on the Rotationally Induced Ingress

[+] Author Affiliations
Liu Zhenxia, Ma Jun, Hu Jianping, Zhang Lifen

Northwestern Polytechnical University, Xi’an, China

Paper No. GT2017-63512, pp. V05BT15A008; 11 pages
doi:10.1115/GT2017-63512
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5088-6
  • Copyright © 2017 by ASME

abstract

Rotating air inside the wheel-space creates a radial gradient of pressure which drives the gas ingress through the rim seal. This kind of reason for the gas ingestion is called rotationally induced ingress (RI). The minimum sealing flow rate was proportional to the seal-clearance. The geometric structure, including the position of the seal-clearance, is also important to predict the minimum sealing flow rate for RI ingestion. This paper gets the sealing efficiency and the flow results of different geometric structure through the method of 3D steady compressible CFD (Computational Fluid Dynamics). Because the analysis of the influence of geometry is given under the condition of RI ingestion, a 3D model without turbine blades has been chosen.

Some experiments initially revealed that the different seal-clearance positions have different sealing efficiency. However, what position would have best sealing efficiency was not given. If the position of seal-clearance is selected in the rotor disc or the static disc, the effect of the “pump” of the rotor disc is more obvious, which makes the gas ingestion serious. When the position of seal-clearance is near the rotor disc, the gas is fully mixed with the cooling air after the ingestion and then flows to the side of the static disc. Therefore, the sealing efficiency of the structure, whose seal-clearance position is near the rotor disc, will be higher than that, whose seal-clearance position is close to the static disc. When the fluid flows to the static disc, the velocity triangle shows that a barrier will be created between the cavity and mainstream in a particular seal-clearance position, which makes the efficiency higher than other positions.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In