Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Recuperated Flameless Combustor for an Inverted Brayton Cycle Microturbine Used in Residential Micro-CHP

[+] Author Affiliations
Michel Delanaye, Rabia Nacereddine, Mehdi Rouabah

MITIS SA, Liège, Belgium

Andrés Giraldo

MITIS/University of Liege, Liège, Belgium

Valentina Fortunato, Alessandro Parente

Free University of Brussels, Brussels, Belgium

Paper No. GT2017-65271, pp. V04BT04A078; 11 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5085-5
  • Copyright © 2017 by ASME


The paper presents recent work in the development of a clean and efficient natural gas combustor for a micro-CHP system based on a gas turbine for the residential sector. The large scale deployment of natural gas micro-CHP systems represents a great opportunity to contribute to a reduction of CO2 emissions by a substantial increase of the efficiency of primary energy source conversion. A micro-CHP system, well designed for a residential application, which means a power of 1kWe output and high efficiency (larger than 20%), may reduce annual household emissions up to factors close to 2.5. The micro-CHP system developed in this work uses a small gas turbine and an inverted Brayton cycle which advantageously allows the use of substantially larger turbomachinery components than a conventional pressurized Brayton cycle. The paper presents a new counterflow recuperator. Its design has been thoroughly studied by advanced 3D CFD to obtain compactness and high efficiency at low cost. A new flameless combustor has been developed in order to reduce to single digits the emissions of pollutants (NOx and CO) and obtain a highly efficient and stable combustion for various gases. The design methodology based on 3D CFD modelling is presented as well as experimental results demonstrating the performance of the recuperated flameless combustor for various operationg conditions.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In