Full Content is available to subscribers

Subscribe/Learn More  >

Large Eddy Simulation of Combustion Instability of Low-Swirl Flames in a Multi-Nozzle Combustor

[+] Author Affiliations
Weijie Liu

Aero-Engine Academy of China, Beijing, China

Bing Ge, Shusheng Zang

Shanghai Jiao Tong University, Beijing, China

Mingjia Li, Wenyan Xu

Harbin Marine Boiler and Turbine Research Institute, Harbin, China

Paper No. GT2017-65200, pp. V04BT04A073; 10 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5085-5
  • Copyright © 2017 by ASME


Large eddy simulation of self-induced combustion instability of low-swirl flames in a multi-nozzle combustor is carried out. The unsteady behaviors in the multi-nozzle burner including pressure fluctuation, velocity oscillation, PVC and triggering mechanism are studied in detail. Numerical result is compared with experimental measurement in terms of frequency and amplitude of pressure fluctuation. Results show LES successfully predicts the longitudinal instability mode in the multi-nozzle combustor with a reasonable agreement with experimental data. Flow parameters in the burner, such as pressure, axial velocity and CH4 mass fraction oscillate with the same frequency but different phases. Combustion instability leads to flame flashback into the burner due to the reversal flow. Vortex generation and shedding off in the outer shear layer result in unsteady heat release at the tail edge of the outer flame near combustor wall. Meanwhile, the unsteady heat release feedback to the pressure and flowfield, which is the main reason for inducing combustion instability.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In