0

Full Content is available to subscribers

Subscribe/Learn More  >

LES-Based Scattering Matrix Method for Low-Order Acoustic Network Models

[+] Author Affiliations
Changjin Yoon, Owen Graham, Fei Han

GE Global Research Center, Niskayuna, NY

Kwanwoo Kim

GE Aviation, West Chester, OH

Katsuo Maxted, Thomas Caley, Jong Guen Lee

University of Cincinnati, Cincinnati, OH

Paper No. GT2017-65123, pp. V04BT04A070; 9 pages
doi:10.1115/GT2017-65123
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5085-5
  • Copyright © 2017 by ASME

abstract

The identification of scattering matrix method is conducted using high fidelity Large Eddy Simulations. From a series of LES results, the scattering matrices of a plain orifice and a lean premixed nozzle are evaluated and compared with the corresponding experimental data. It is confirmed that LES simulations are capable of predicting the acoustic scattering matrix, with some limitations. The magnitude of the scattering matrices imply that the acoustic energy transfer across the orifice and mixer agree fairly well with that of the scattering matrices from the experimental data. Moreover, the phase angle of transmission/reflection elements for the traveling wave in the upstream region consistently follows the experimental trends. The phase angle of transmission/reflection elements for traveling waves in the downstream region, however, shows a significant discrepancy with the experimental measurements. For the direct use of the LES-based scattering matrix method, the accuracy of determination of the phase angle of reflection/transmission of the traveling wave in the downstream region needs further study.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In