0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Azimuthal Velocity Fluctuation on Hollow Cone Spray

[+] Author Affiliations
Aravind I. Babu, Satya Chakravarthy

Indian Institute of Technology Madras, Chennai, India

Paper No. GT2017-65112, pp. V04BT04A069; 9 pages
doi:10.1115/GT2017-65112
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5085-5
  • Copyright © 2017 by ASME

abstract

This paper reports an experimental investigation on the effect of imposed azimuthal velocity fluctuation on the spray characteristics of a hollow cone spray produced from a pressure-swirl nozzle. This effect is inferred by performing experiments separately on 0° and 60° axial straight vane swirlers oriented concentric to the spray nozzle for the air-flow subjected to upstream acoustic forcing. The hollow cone spray is subjected to external excitation using a loudspeaker at two different frequencies and two amplitudes. These frequencies correspond to the resonant frequencies of the plenum. The 60° vane swirler, when subjected to acoustic excitation, produces axial and azimuthal velocity fluctuation downstream of the swirler, whereas the 0° swirler produces only axial velocity fluctuation downstream of the swirler. In both 60° and 0° swirlers, the downstream velocity fluctuation due to acoustic disturbances propagate at the speed of sound. In addition, the velocity fluctuations produced due to the excitation are convected by the mean flow. This results in a combined effect of velocity fluctuations at the swirler exit. The hollow cone spray responds more readily to excitation at low frequencies than higher frequencies. This is observed from the high-speed shadowgraph images. The high-speed shadowgraph images acquired are processed to extract spray cone angle. The phase averaged spray cone angle fluctuates for different phase angle within an acoustic cycle. The analysis of the high-speed shadowgraph images shows that the cone angle fluctuation amplitude is higher for the 0° swirler as compared to the 60° swirler. The variation of the liquid sheet thickness and breakup length due to excitation is captured using high-speed planar laser induced fluorescence. The study clearly demonstrates that azimuthal velocity fluctuation affects the spray formation process.

Copyright © 2017 by ASME
Topics: Sprays

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In