0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of Superheated Kerosene Jet Fuel Sprays From a Pressure-Swirl Nozzle

[+] Author Affiliations
Shaji S. Manipurath

National Research Council Canada, Ottawa, ON, Canada

Paper No. GT2017-64846, pp. V04BT04A050; 15 pages
doi:10.1115/GT2017-64846
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5085-5
  • Copyright © 2017 by Crown in Right of Canada

abstract

The development of higher thermal stability fuels and the development of onboard fuel deoxygenation systems may permit the preheating of fuel up to about 755 K before the onset of pyrolysis. At a sufficiently high fuel temperature for a given combustion chamber pressure, the flash vaporization of liquid or supercritical state fuel can ensue upon injection into the chamber. The performance of standard aviation turbine engine fuel nozzles, designed for mechanically breaking up liquid sprays, may thus be significantly altered by the employment of severely preheated fuel.

An evaluation of heated and superheated Jet A-1 sprays from a pressure-swirl atomizer was implemented in a purpose-built test facility. Laser sheet imaging of the spray yielded simultaneous axial cross-sectional maps of Mie-scatter and fluorescence signals. In addition, particle image velocimetry was also used to measure the spray droplet velocity-field. The results indicated that increasing the fuel’s dimensionless level of superheat ΔT* from −1.8 to 0.6 yielded significant changes in the spray structure; specifically, finer droplet sizes, a more uniform dropsize distribution across the spray, increased spray cone angle till about ΔT* = −0.8 followed by a contraction thereafter, marginally increased spray penetration, and significantly higher localised near nozzle tip droplet velocities. The measurements supported the hypothesis that the initial hollow-cone spray structure evolves to a near solid-cone structure with a central vapour core as the fuel is superheated.

Copyright © 2017 by Crown in Right of Canada

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In