Full Content is available to subscribers

Subscribe/Learn More  >

High Momentum Jet Flames at Elevated Pressure: B — Detailed Investigation of Flame Stabilization With Simultaneous PIV and OH-LIF

[+] Author Affiliations
Michael Severin, Oliver Lammel, Holger Ax, Rainer Lückerath, Wolfgang Meier, Manfred Aigner

German Aerospace Center (DLR), Stuttgart, Germany

Johannes Heinze

German Aerospace Center (DLR), Köln, Germany

Paper No. GT2017-64556, pp. V04BT04A028; 13 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5085-5
  • Copyright © 2017 by ASME


A model FLOX® combustor, featuring a single high momentum premixed jet flame, has been investigated using laser diagnostics in an optically accessible combustion chamber at a pressure of 8 bar. The model combustor was designed as a large single eccentric nozzle main burner (Ø 40 mm) together with an adjoining pilot burner and was operated with natural gas.

To gain insight into the flame stabilization mechanisms with and without piloting, simultaneous Particle Image Velocimetry (PIV) and OH Laser Induced Fluorescence (LIF) measurements have been performed at numerous two-dimensional sections of the flame. Additional OH-LIF measurements without PIV-particles were analyzed quantitatively resulting in absolute OH concentrations and temperature fields.

The flow field looks rather similar for both the unpiloted and the piloted case, featuring a large recirculation zone next to the high momentum jet. However, flame shape and position change drastically. For the unpiloted case, the flame is lifted, widely distributed and isolated flame kernels are found at the flame root in the vicinity of small scale vortices. For the piloted flame, on the other hand, both pilot and main flame are attached to the burner base plate, and flame stabilization seems to take place on much smaller spatial scales with a connected flame front and no isolated flame kernels.

The single shot analysis gives rise to the assumption that for the unpiloted case small scale vortices act like the pilot burner flow in the opposed case and constantly impinge and ignite the high momentum jet at its root.

Copyright © 2017 by ASME
Topics: Pressure , Momentum , Flames



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In