0

Full Content is available to subscribers

Subscribe/Learn More  >

A Generalized FGM Progress Variable Weight Optimization Using HEEDS

[+] Author Affiliations
Graham Goldin

Siemens CD-adapco, Lebanon, NH

Yongzhe Zhang

Siemens CD-adapco, Melville, NY

Paper No. GT2017-64446, pp. V04BT04A017; 7 pages
doi:10.1115/GT2017-64446
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5085-5
  • Copyright © 2017 by ASME

abstract

The Flamelet Generated Manifold (FGM) model requires a reaction progress variable which is usually defined as a weighted sum of species mass fractions. This progress variable should increase monotonically as flamelet states progress from unburnt to chemical equilibrium. A favorable attribute of the progress variable is that the flamelet species should change gradually with the progress variable, which reduces sensitivity of these species to any predicted errors in the progress variable. Previous publications have presented optimization algorithms for specific flamelet operating conditions, including fuel and oxidizer compositions and temperatures, and pressures. This work applies the HEEDS optimization software to find optimal species weights for a range of fuels and operating conditions. The fuels included are methane, methane-hydrogen, n-dodecane and n-heptane, at fuel-oxidizer temperatures of 293K and 1000K, and pressures of 1 and 30 atmospheres. For manifolds modeled by constant pressure ignition reactors, the optimal progress variable weights using four species weights are {αCO2 = 1, αCO = 0.91, αH2O = 0.52, αH2 = 1}, and for eight species weights are {αCO2 = 1, αCO = 0.91, αH2O = 0.51, αH2 = 1, αC2H2 = 0.16, αOH = −0.66, αH = −0.38, αO = 0.4}.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In