Full Content is available to subscribers

Subscribe/Learn More  >

On the Combination of Large Eddy Simulation and Phenomenological Soot Modelling to Calculate the Smoke Index From Aero-Engines Over a Large Range of Operating Conditions

[+] Author Affiliations
Jean Lamouroux, Stéphane Richard, Quentin Malé

Safran Helicopter Engines, Bordes, France

Gabriel Staffelbach, Antoine Dauptain, Antony Misdariis

CERFACS, Toulouse, France

Paper No. GT2017-64262, pp. V04BT04A004; 10 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5085-5
  • Copyright © 2017 by ASME


Nowadays, models predicting soot emissions are, neither able to describe correctly fine effects of technological changes on sooting trends nor sufficiently validated at relevant operating conditions to match design office quantification needs. Yet, phenomenological descriptions of soot formation, containing key ingredients for soot modeling exist in the literature, such as the well-known Leung et al. model (Combust Flame 1991). This approach indeed includes contributions of nucleation, surface growth, coagulation, oxidation and thermophoretic transport of soot. When blindly applied to aeronautical combustors for different operating conditions, this model fails to hierarchize operating points compared to experimental measurements.

The objective of this work is to propose an extension of the Leung model, including an identification of its constants over a wide range of condition relevant of gas turbines operation. Today, the identification process can hardly be based on laboratory flames since few detailed experimental data are available for heavy-fuels at high pressure. Thus, it is decided to directly target smoke number values measured at the engine exhaust for a variety of combustors and operating conditions from idling to take-off. A Large Eddy Simulation approach is retained for its intrinsic ability to reproduce finely unsteady behavior, mixing and intermittency.

In this framework, The Leung model for soot is coupled to the TFLES model for combustion. It is shown that pressure-sensitive laws for the modelling constant of the soot surface chemistry are sufficient to reproduce engine emissions. Grid convergence is carried out to verify the robustness of the proposed approach. Several cases are then computed blindly to assess the prediction capabilities of the extended model. This study paves the way for the systematic use of a high fidelity tool solution in design office constraints for combustion chamber development.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In