0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Porous Injection Technology to Reduce Emissions for Dry Low NOx Combustors: Micromixer and Swirl Injectors

[+] Author Affiliations
Umesh Bhayaraju, Mahmoud Hamza, San-Mou Jeng

University of Cincinnati, Cincinnati, OH

Paper No. GT2017-63976, pp. V04AT04A059; 10 pages
doi:10.1115/GT2017-63976
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by ASME

abstract

The Combustion and Fire Research Laboratory (CFRL) at the University of Cincinnati (UC) is working on the development of advanced next generation injectors for DLN combustors. Several inputs were received from the project partners during the development phase. In the present paper, developmental work on two novel injectors with Porous Injection Technology (PIT) is presented. The technology has the potential to reduce NOx emissions to single digit PPM level with a stable combustion across wide range of load conditions.

One of the key factors that are essential for lowering NOx levels is the efficient mixing of fuel-air in both spatial and temporal domains. The porous injection technology has the potential to reduce the spatial and temporal gradients to a minimum. In the present paper, two measurement techniques were used to evaluate the fuel-air mixing under atmospheric conditions. The CO2 mixing technique was used to quantify the spatial variations in the fuel mass fraction. Planar Laser Induced Fluorescence (PLIF) was used to obtain both spatial and temporal fuel mass fractions. The CO2 mixing measurements were used to validate the PLIF data for quantification. The RMS fluctuations in spatial and temporal domains were quantified from PLIF data. The combustion experiments were carried out at atmospheric pressure with a preheated temperature of air of 500–650 K and equivalence ratio of 0.5–0.8. The pressure drop across the injector was 4%. Natural gas with 90% methane and 9% ethane was used as fuel. The results show a stable flame for both injectors without combustion instabilities. Both injectors show low NOx levels. For conventional swirl stabilized design with PIT, the NOx levels were of the order of 1.5 ppm at the firing temperature of 1866 K whereas for the novel micromixer design, the NOx levels were of the order of 4 ppm @ ∼1866 K.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In