Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of the Influence of Burner Geometry on Flame Characteristics at a Dry Low Emission Industrial Prototype Burner at Atmospheric Pressure Conditions

[+] Author Affiliations
Arman Ahamed Subash, Robert Collin, Marcus Aldén, Atanu Kundu, Jens Klingmann

Lund University, Lund, Sweden

Paper No. GT2017-63950, pp. V04AT04A058; 11 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by ASME


Laser based investigations were performed on a prototype 4th generation DLE (dry low emission) burner under atmospheric pressure conditions to study the effects of changing burner geometry on the flame. In a full burner configuration, a divergent conical section termed the Quarl is located after the burner exit for expanding the flow area and holding the flame. The planar laser-induced fluorescence (PLIF) of OH radicals together with the flame chemiluminescence imaging were employed to study the flame characteristics under the conditions with and without Quarl using CH4 as fuel to understand the influence of Quarl on the flame. When there is no Quarl, the flame has more freedom to expand at the burner exit and with an increase in the global equivalence ratio (ϕ), the width of the flame increases and the total extension of the flame shortens. For all the global ϕ considered here, the total extension of the flame is shorter under the condition without Quarl in comparison to the one with Quarl. For a richer global ϕ (ϕ ≥ 0.46) the outer recirculation zones (ORZs) are not observed under the condition with Quarl, but are observed without Quarl along with the inner recirculation zone. Without Quarl conditions, equivalence ratios (ϕ) of the concentrically arranged three sections of the burner: an outer Main section, an intermediate section (Pilot) and a central pilot body or pre-chamber combustor, termed the RPL (Rich-Pilot-Lean) sections were altered. The results show that at a constant global ϕ, with an increase in the RPL ϕ and the Pilot ϕ, the flame shortens and expands radially as well as the flame stabilization zone that is produced after the burner exit moves further downstream. At a richer global ϕ, the ORZ is observed along with the inner recirculation zone of the flame. Otherwise, with an increase in global ϕ, the changes in the flame shape, in the flame fluctuation and in the flame stabilization position follow similar trends as for increasing the Pilot ϕ and the RPL ϕ. Additionally, combustion emissions were obtained to observe the effects on NOX level for different operating conditions with and without Quarl.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In