0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Hydrogen Enriched Methane Flame in a Dry Low Emission Industrial Prototype Burner at Atmospheric Pressure Conditions

[+] Author Affiliations
Arman Ahamed Subash, Robert Collin, Marcus Aldén, Atanu Kundu, Jens Klingmann

Lund University, Lund, Sweden

Paper No. GT2017-63924, pp. V04AT04A056; 10 pages
doi:10.1115/GT2017-63924
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by ASME

abstract

Experiments were performed on a prototype 4th generation DLE (dry low emission) burner under atmospheric pressure conditions to investigate the effects of hydrogen (H2) enrichment on methane (CH4) flames. The burner assembly was designed to have three concentrically arranged premixed sections: an outer Main section, an intermediate section (Pilot) and a central pilot body termed the RPL (Rich-Pilot-Lean) section. The Planar laser-induced fluorescence (PLIF) of OH radicals together with flame chemiluminescence imaging were employed for studying the local flame characteristics so as to be able to investigate the turbulence-flame interactions and the location of the reaction zone at the burner exit. Flames were investigated for three different fuel mixtures having hydrogen (H2)/methane (CH4) in vol. % concentration of 0/100, 25/75 and 50/50. The results show that the characteristics of the flames are clearly affected by the addition of hydrogen and the effects are expected due to the faster reaction rate, higher diffusivity and higher laminar burning velocity of H2. Enriching the flame with H2 at a constant global phi (ϕ) is found to shorten the total extension of the flame due to the higher laminar flame speed. The OH signal distribution becomes thicker and more pronounced due to the higher production of OH radicals, and the flame stabilization zone that is produced after the burner throat, moves further downstream. At a constant global ϕ in altering the RPL and the Pilot ϕ, similar changes for both 0/100 and 25/75 (in vol. %) of the H2/CH4 fuel mixtures can be observed. At a rich RPL ϕ, the secondary RPL flame contributes to the main flame and to determining the flame stabilization position. The flame stabilization zone located after the burner throat moves further downstream with an increase in the RPL ϕ. When the PFR (Pilot fuel ratio) increases, the extension of the flame shortens and the flame stabilization zone moves upstream. Combustion emissions were also determined so as to observe the effects of the H2 enrichment on the NOX level.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In