0

Full Content is available to subscribers

Subscribe/Learn More  >

A CFD Simulation of Coal Syngas Oxy-Combustion in a High-Pressure Supercritical CO2 Environment

[+] Author Affiliations
Hassan Abdul-Sater, James Lenertz, Chris Bonilha

Creative Power Solutions, Fountain Hills, AZ

Xijia Lu, Jeremy Fetvedt

8 Rivers Capital, Durham, NC

Paper No. GT2017-63821, pp. V04AT04A051; 12 pages
doi:10.1115/GT2017-63821
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by ASME

abstract

The Allam Cycle is an oxy-fuel supercritical CO2 power cycle that generates low-cost electricity from fossil fuels while producing near-zero air emissions. The turbine exhaust (sCO2) is then available for partial injection into underground storage while remainder is reused in the power cycle. Novel combustors required by this and other sCO2 cycles are critical to their commercialization. A conceptual design was developed for a coal syngas-fueled oxy-fuel combustor that meets the conditions of the Allam Cycle. The design of this combustor utilizes a 300MWe coal syngas-fired Allam Cycle thermodynamic analyses and ASPEN process models as inputs to the combustor. The primary inputs for design of the combustor included the fuel mixture compositions and respective flow rates for the constituent gases, pressures, and operating temperatures which were scaled to a 5MWth test article. The combustor was sized to accommodate the required pressures, heat release rate, flow rates, and residence times to produce well mixed turbine inlet flows with complete combustion. A preliminary design for a 5MWth test scale combustor was then developed, and a numerical study using Computational Fluid Dynamics (CFD) simulations was carried out to demonstrate the feasibility of that combustor. Steady-state RANS simulations were used to qualitatively examine the preliminary design of the 5MWth combustor and predict the fluid mechanics, heat transfer, and combustion. The purpose of the analysis was to verify the following criteria: 1) good mixing of the fuel and oxidizer in the primary zone, 2) uniform exhaust gas temperature and 3) efficient combustion with complete CO burnout. Additionally, the analysis investigated wall temperature and the impact of varying the fuel composition on combustion performance. The CFD model results were in good agreement with the equilibrium one-dimensional (1D) Aspen model results. The CFD predictions of the current conceptual design verified the identified key criteria for the combustor and demonstrated its feasibility.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In