0

Full Content is available to subscribers

Subscribe/Learn More  >

Ignition Delay Times of High Pressure Oxy-Methane Combustion With High Levels of CO2 Dilution

[+] Author Affiliations
Owen Pryor, Batikan Koroglu, Samuel Barak, Joseph Lopez, Erik Ninnemann, Leigh Nash, Subith Vasu

University of Central Florida, Orlando, FL

Paper No. GT2017-63666, pp. V04AT04A044; 8 pages
doi:10.1115/GT2017-63666
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by ASME

abstract

Ignition delay times and methane species time-histories were measured for methane/O2 mixtures in a high CO2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 1 and 31 atm. The experimental mixtures were conducted at an equivalence ratio of 1 with CH4 mole fractions ranging from 3.5%–5% and up to 85% CO2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of two literature kinetic mechanisms (GRI 3.0 and ARAMCO Mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into the different parameters showing that the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane under these conditions. Current data provides crucial validation data needed for development of future methane/CO2 kinetic mechanisms.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In