Full Content is available to subscribers

Subscribe/Learn More  >

Towards Predicting Lean Blow-Off Based on Damköhler Number and Practical Reaction Zone

[+] Author Affiliations
Zhonghao Wang, Bin Hu, Qingjun Zhao, Jianzhong Xu

Chinese Academy of Sciences, Beijing, China

Paper No. GT2017-63507, pp. V04AT04A039; 11 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by ASME


Lean Blow-off (LBO) is important in gas turbine combustion. In this paper, numerical simulation and experiment are conducted to develop a new method for LBO prediction of gas turbine combustors based on Damköhler (Da) number and practical reaction zone (PRZ). PRZ is established based on OH concentration in the reacting flow of combustor, and it is simplified to a perfectly stirred reactor (PSR) due to the drastic mixing caused by swirling flow. Flow time scale (Ft) and chemical time scale (Ct) contained in Da number are all specified based on PRZ. Flow time scale (Ft) is defined as the residence time of fuel flowing through the PRZ, and chemical time scale (Ct) is defined as the shortest time needed to trigger the chemical reaction in PRZ. Da numbers, which introduce the physical competition between Ft and Ct, are calculated under LBO conditions and design point. The average Da number at LBO is about 1, ranging from 0.6 to 1.86, and the Da number of design condition is 4.33, showing that the method proposed in the paper is reliable and has the potential for practical engineering applications.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In