0

Full Content is available to subscribers

Subscribe/Learn More  >

Plasma-Assisted Combustor Dynamics Control at Ambient and Realistic Gas Turbine Conditions

[+] Author Affiliations
Wookyung Kim, Jeffrey Cohen

United Technologies Research Center, East Hartford, CT

Paper No. GT2017-63477, pp. V04AT04A037; 11 pages
doi:10.1115/GT2017-63477
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by United Technologies Corporation

abstract

The central objective of this study is to investigate the effectiveness of implementing a plasma discharge to improve combustor dynamics and flame stability. Specifically, a nano-second pulsed plasma discharge (NSPD) was applied to a premixed gaseous fuel/air dump combustor for mitigation of dynamic combustion instabilities with a minimal NOX penalty. This paper addresses the scaling of this technology from ambient pressure and temperature conditions to more realistic gas turbine combustor conditions.

A model combustor operating at representative conditions of O (102) m/s flow velocity, ∼ 580 K combustor inlet temperature, and ∼ 5 atm in-combustor pressure was selected to simulate a typical low-power environment of future aero engine gas turbine combustors. Fully premixed methane or propane was utilized as a fuel. Similar to a previous ambient-pressure study, a significant reduction of pressure fluctuation level was observed, by a factor of 2X to 4X over a wide range of velocity at the baseline temperature and pressure. The plasma power required for the reduction increased linearly with increasing velocity. The change of fuel from methane to propane showed that propane requires significantly (2X) higher plasma power to achieve a similar level of noise reduction. It was also observed that the lean blowout (LBO) limit was significantly extended in the presence of the plasma, however, substantial incomplete combustion occurs in the extended regime. NOX measurements showed that the incremental NOX production due to the presence of the plasma was low (∼ < 1EINOX) in general, however, it increased with decreasing velocity and pressure, and increasing temperature.

Copyright © 2017 by United Technologies Corporation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In