0

Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Combustion Noise of a Swirl-Stabilized Flame Using Laser Interferometric Vibrometry Validated by Acoustic Measurements

[+] Author Affiliations
Felix Greiffenhagen, Johannes Peterleithner, Jakob Woisetschläger

Graz University of Technology, Graz, Austria

Paper No. GT2017-63418, pp. V04AT04A033; 8 pages
doi:10.1115/GT2017-63418
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by ASME

abstract

Modern gas turbines rely more and more on premixed combustion systems. While they produce less emission, they are more prone to combustion instabilities. The combustion noise emitted by turbulent swirl-stabilized flames can be calculated directly if density fluctuations in the flame are known as a function of time and space. Recently it was shown that laser interferometry records density fluctuations in the flame quantitatively. In this work a swirl-stabilized, rotationally-symmetric unconfined methane flame at lean operation conditions and low air mass flow rate was scanned by laser interferometric vibrometry (LIV) in order to calculate the overall sound power emitted by the flame. To validate the outcome calculated from the LIV data, sound power was also measured in a half-hemisphere by microphones, using pressure-pressure-probes. These probes record the total sound power of the combustion noise emitted by the flame. To improve signal to noise ratio for this measurement, a siren was used to generate a reproducible excitation of the flame at 212Hz. Both measurement methods were in good agreement. With the LIV data detailed information about the local density fluctuations in the flame causing the sound emission was obtained. Also a preferred acoustic propagation direction between 40° and 80° to the burner axis in downstream direction was observed. This deviation from a uniform distribution is likely to be caused by temperature gradients in the flame. A discussion of systematic errors inherent to the LIV technique and data reduction concludes this publication.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In