0

Full Content is available to subscribers

Subscribe/Learn More  >

Strong Azimuthal Combustion Instabilities in a Spray Annular Chamber With Intermittent Partial Blow-Off

[+] Author Affiliations
Kevin Prieur, Daniel Durox, Thierry Schuller, Sébastien Candel

Université Paris-Saclay, Châtenay-Malabry cedex, France

Paper No. GT2017-63343, pp. V04AT04A027; 14 pages
doi:10.1115/GT2017-63343
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by ASME

abstract

The present article reports original experiments carried out in the MICCA-Spray combustor developed at EM2C, CNRS and CentraleSupélec. This system comprises 16 swirl spray injectors. Liquid n-heptane is injected by hollow cone simplex atomizers. The combustion chamber is formed by two cylindrical quartz tubes allowing full optical access to the flame region and it is equipped with eight pressure sensors recording signals in the plenum and chamber. A high speed camera provides images of the flames and photomultipliers record the light intensity from different flames. For certain operating conditions, the system exhibits well defined instabilities coupled by the first azimuthal mode of the chamber at a frequency of about 750 Hz. These instabilities occur in the form of bursts with a moderate level of growth. Examination of the pressure and the light intensity signals gives access to the acoustic energy source term. Analysis of the phase between the two signals during the instability bursts (growth, limit cycle, decay) is carried out using cross-spectral analysis. At limit cycle, large amplitude of pressure oscillations are reached with peak values around 5000 Pa (or 5% of the mean pressure in the chamber), and these levels persist over a finite period of time. Detailed analysis of the signals using the spin ratio indicates that the standing mode is predominant. The chamber can exhibit a spinning mode but with a lower amplitude of acoustic fluctuation. Analysis of the flame dynamics at the pressure anti-nodal line reveals a strong longitudinal pulsation with heat release rate oscillations in phase and increasing linearly with the acoustic pressure even at the highest oscillation levels. At the pressure nodal line, the flames are subjected to large transverse velocity fluctuations leading to a transverse motion of the flames and partial blow-off. Scenarios and modeling elements are developed to interpret these features. To the best of our knowledge, this is the first time that azimuthal instabilities are characterized in a well-controlled annular combustor with swirled spray flames.

Copyright © 2017 by ASME
Topics: Combustion , Sprays

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In