0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Carrier Air Preheating on Autoignition of Inline-Injected Hydrogen-Nitrogen Mixtures in Vitiated Air of High Temperature

[+] Author Affiliations
Christoph A. Schmalhofer, Peter Griebel, Manfred Aigner

German Aerospace Center (DLR), Stuttgart, Germany

Paper No. GT2017-63249, pp. V04AT04A018; 12 pages
doi:10.1115/GT2017-63249
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by ASME

abstract

Gas turbines will play a significant role in future power generation systems because they provide peak capacity due to their fast start-up capability and high operational flexibility. However, in order to meet the COP 21 goals, de-carbonization of as turbine fuels is required. Compared to natural gas operation, autoignition and flashback risks in gas turbines operated on hydrogen-rich fuels are higher which has to be taken into account for a proper gas turbine design. From investigations of these phenomena at relevant operating conditions with appropriate measurement techniques, e.g. high-speed imaging, the understanding of the non-stationary processes occurring during autoignition can be improved and design guidelines for a safe and reliable gas turbine operation can be derived.

The present study investigates the influences of elevated carrier-air preheating temperatures and hydrogen fuel volume fractions on autoignition at hot gas temperatures higher than 1100 K and pressures of 15 bar. An in-line co-flow injector is used to inject the hydrogen-nitrogen fuel mixtures. The formation, temporal and spatial development of autoignition kernels at high-temperature vitiated air conditions, e.g. relevant to reheat combustor operation, are studied. The experiments were conducted in an optically accessible mixing section of a generic reheat combustor. The hydrogen-nitrogen fuel mixtures of up to 70 vol. % hydrogen are injected in-line into the mixing section along with the carrier-air which was preheated to temperatures between 303 K and 703 K. High-speed imaging was used to detect the autoignition kernels and their temporal and spatial development from luminescence signals. Particle Image Velocimetry measurements were conducted to obtain the velocity distribution in the mixing section at autoignition conditions.

The influences of vitiated air temperatures and carrier preheating temperatures on autoignition and flame stabilisation limits are shown, alongside the spatial distribution of different types of autoignition kernels, developing at different stages of the autoignition process. The development of autoignition kernels could be linked to the shear layer development derived from global experimental conditions.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In