0

Full Content is available to subscribers

Subscribe/Learn More  >

Low-Order Modelling of Combustion Noise in an Aero-Engine: The Effect of Entropy Dispersion

[+] Author Affiliations
Yasser Mahmoudi, Andrea Giusti, Epaminondas Mastorakos, Ann P. Dowling

University of Cambridge, Cambridge, UK

Paper No. GT2017-63147, pp. V04AT04A009; 9 pages
doi:10.1115/GT2017-63147
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by ASME

abstract

The present work studies the effect of entropy dispersion on the level of combustion noise at the turbine outlet of the Rolls-Royce ANTLE aero-engine. A new model for the decay of entropy waves, based on modelling dispersion effects, is developed and utilised in a low-order network model of the combustor (i.e. LOTAN code that solves the unsteady Euler equations). The proposed model for the dispersion of entropy waves only requires the mean velocity field as an input, obtained by RANS computations of the demonstrator combustor. LOTAN is then coupled with a low order model code (LINEARB) based on the semi-actuator disk model that studies propagation of combustion noise through turbine blades. Thus, by combining LOTAN and LINERAB we predict the combustion noise and its counterparts, direct and indirect noise, generated at the turbine exit. In comparison with experimental data it is found that without the inclusion of entropy dispersion, the level of combustion noise at the turbine exit is over-predicted by almost two orders of magnitude. The introduction of entropy dispersion in LOTAN results in much better agreement with the experimental data, highlighting the importance of entropy wave dispersion for the prediction of combustion noise in real engines. In more detail, the agreement with the experiment for high and low frequencies was very good. At intermediate frequencies the experimental measurements are still over-predicted, however the predicted noise is much smaller compared to the case without entropy dispersion. This discrepancy is attributed to (i) the role of turbulent mixing in the overall decay of the entropy fluctuations inside the combustor, not considered in the model developed for the decay of entropy waves, and (ii) the absence of a proper model in LINEARB for the decay of entropy waves as they pass through the turbine blade rows. These are areas that still need further development to improve the prediction of low-order network codes.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In