Full Content is available to subscribers

Subscribe/Learn More  >

Time-Response of Recent Prefilming Airblast Atomization Models in an Oscillating Air Flow Field

[+] Author Affiliations
G. Chaussonnet, A. Müller, S. Holz, R. Koch, H.-J. Bauer

Karlsruhe Institut für Technologie, Karlsruhe, Germany

Paper No. GT2017-63041, pp. V04AT04A002; 12 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5084-8
  • Copyright © 2017 by ASME


The present study investigates the response of recent primary breakup models in the presence of an oscillating air flow, and compares them to an experiment realized by Müller and coworkers in 2008. The experiment showed that the oscillating flow field has a significant influence on the Sauter Mean Diameter (SMD) up to a given frequency. This observation highlights the low-pass filter character of the prefilming airblast atomization phenomenon, which also introduces a significant phase shift on the dynamics of SMD of the generated spray. The models are tested in their original formulations without any calibration in order to assess their robustness versus different experiments in terms of SMD and time-response to an oscillating flow field. Special emphasis is put to identify the advantages and weaknesses of theses models, in order to facilitate their future implementation in CFD codes. It is observed that some models need an additional calibration of the time constant in order to match the time shift observed in the experiment, whereas some others show a good agreement with the experiment without any modification. Finally, it is demonstrated that the low-pass filter character of the breakup phenomenon can be retrieved by considering the history of the local gas velocity, instead of the instantaneous velocity. This might result in a higher simulation fidelity within CFD codes.

Copyright © 2017 by ASME
Topics: Air flow



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In