0

Full Content is available to subscribers

Subscribe/Learn More  >

Preliminary Design Optimization of an Organic Rankine Cycle Radial Turbine Rotor

[+] Author Affiliations
Edna Raimunda da Silva, Konstantinos G. Kyprianidis

Mälardalen University, Västerås, Sweden

Michael Säterskog

Saab AB, Linköping, Sweden

Ramiro G. Ramirez Camacho

Federal University of Itajubá, Itajubá, Brazil

Angie L. Espinosa Sarmiento

Federal Center of Technology Education, Rio de Janeiro, Brazil

Paper No. GT2017-64028, pp. V003T06A018; 15 pages
doi:10.1115/GT2017-64028
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration Applications; Organic Rankine Cycle Power Systems
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5083-1
  • Copyright © 2017 by ASME

abstract

The present study describes the application of a preliminary design approach for the optimization of an organic Rankine cycle radial turbine. Losses in the nozzle the rotor have initially been modelled using a mean-line design approach. The work focuses on a typical small-scale application of 50 kW, and two working fluids, R245fa (1,1,1,3,3,-pentafluoropropane) and R236fa (1,1,1,3,3,3-hexafluoropropane) are considered for validation purposes. Real gas formulations have been used based on the NIST REFPROP database. The validation is based on a design from the literature, and the results demonstrate close agreement the reference geometry and thermodynamic parameters. The total-to-total efficiencies of the reference turbine designs were 72% and 79%. Following the validation exercise, an optimization process was performed using a controlled random search algorithm with the turbine efficiency set as the figure of merit. The optimization focuses on the R245fa working fluid since it is more suitable for the operating conditions of the proposed cycle, enables an overpressure in the condenser and allows higher system efficiency levels. The R236fa working fluid was also used for comparison with the literature, and the reason is the positive slope of the saturation curve, somehow is possible to work with lower temperatures. Key preliminary design variables such as flow coefficient, loading coefficient, and length parameter have been considered. While several optimized preliminary designs are available in the literature with efficiency levels of up to 90%, the preliminary design choices made will only hold true for machines operating with ideal gases, i.e. typical exhaust gases from an air-breathing combustion engine. For machines operating with real gases, such as organic working fluids, the design choices need to be rethought and a preliminary design optimization process needs to be introduced. The efficiency achieved in the final radial turbine design operating with R245fa following the optimization process was 82.4%. A three-dimensional analysis of the flow through the blade section using computational fluid dynamics was carried out on the final optimized design to confirm the preliminary design and further analyze its characteristics.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In