0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermodynamic Modeling and Comparative Analysis of Supercritical Carbon Dioxide Brayton Cycle

[+] Author Affiliations
Apostolos A. Gkountas, Anastassios M. Stamatelos

University of Thessaly, Volos, Greece

Anestis I. Kalfas

Aristotle University of Thessaloniki, Thessaloniki, Greece

Paper No. GT2017-63990, pp. V003T06A017; 11 pages
doi:10.1115/GT2017-63990
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration Applications; Organic Rankine Cycle Power Systems
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5083-1
  • Copyright © 2017 by ASME

abstract

Supercritical CO2 cycles is a promising technology for the next generation power conversion cycles. Supercritical CO2 Brayton cycles offer equivalent or higher cycle efficiency when compared with steam cycles at similar temperatures. This paper presents an investigation of the sCO2 recompression cycle, where recompressing a fraction of the flow without heat rejection, results in an increase in thermal efficiency. A thermodynamic analysis of a 600 MWth power cycle has been carried out, in order to study the effect of the most significant design parameters on the components performance and cycle efficiency, using two different simulation tools to model the recompression system. An iterative model using basic thermodynamic equations describing the system’s components was employed in this direction. The system was also modeled by means of commercial process modeling software for comparison. Hence, useful results regarding the operating pressures and temperatures of the cycle and how they affect the recuperators, the compressor and the turbine performance have been derived. Finally, a comparative analysis of the results of the two simulation tools and those of a reference cycle from the bibliography is carried out, showing deviations in the range of 2.8 to 4%.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In