0

Full Content is available to subscribers

Subscribe/Learn More  >

Design Optimization of a 3D Parameterized Vane Cascade With Non-Axisymmetric Endwall Based on a Modified EGO Algorithm and Data Mining Techniques

[+] Author Affiliations
Chenxi Li, Zhendong Guo, Liming Song, Jun Li, Zhenping Feng

Xi’an Jiaotong University, Xi’an, China

Paper No. GT2017-63738, pp. V02CT47A009; 14 pages
doi:10.1115/GT2017-63738
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 2C: Turbomachinery
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5080-0
  • Copyright © 2017 by ASME

abstract

The design of turbomachinery cascades is a typical high dimensional and computationally expensive problem, a metamodel-based global optimization and data mining method is proposed to solve it. A modified Efficient Global Optimization (EGO) algorithm named Multi-Point Search based Efficient Global Optimization (MSEGO) is proposed, which is characterized by adding multiple samples at per iteration. By testing on typical mathematical functions, MSEGO outperforms EGO in accuracy and convergence rate. MSEGO is used for the optimization of a turbine vane with non-axisymmetric endwall contouring (NEC), the total pressure coefficient of the optimal vane is increased by 0.499%. Under the same settings, another two optimization processes are conducted by using the EGO and an Adaptive Range Differential Evolution algorithm (ARDE), respectively. The optimal solution of MSEGO is far better than EGO. While achieving similar optimal solutions, the cost of MSEGO is only 3% of ARDE. Further, data mining techniques are used to extract information of design space and analyze the influence of variables on design performance. Through the analysis of variance (ANOVA), the variables of section profile are found to have most significant effects on cascade loss performance. However, the NEC seems not so important through the ANOVA analysis. This is due to the fact the performance difference between different NEC designs is very small in our prescribed space. However, the designs with NEC are always much better than the reference design as shown by parallel axis, i.e., the NEC would significantly influence the cascade performance. Further, it indicates that the ensemble learning by combing results of ANOVA and parallel axis is very useful to gain full knowledge from the design space.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In