Full Content is available to subscribers

Subscribe/Learn More  >

Preliminary Investigation Into the Effects of a Compressor Rim Purge Flow on OGV/Pre-Diffuser and Combustion System Aerodynamics

[+] Author Affiliations
A. D. Walker, B. Koli

Loughborough University, Loughborough, UK

P. A. Beecroft

Rolls-Royce plc, Derby, UK

Paper No. GT2017-63962, pp. V02BT42A008; 12 pages
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 2B: Turbomachinery
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5079-4
  • Copyright © 2017 by Rolls-Royce plc


As aero gas turbine designs strive for ever greater efficiencies the trend is for engine overall pressure ratios to rise. Although this provides greater thermal efficiency it means that cycle temperatures also increase. Traditionally turbines have been the focus of cooling schemes to enable them to survive high temperatures. However, it is envisaged that the compressor delivery air will soon reach temperatures which mean they may require similar cooling strategies to the turbine. One such concept is akin to that of a turbine “rim purge flow” which ensures that hot, mainstream flow does not get ingested into rotor cavities. However, the main gas path in compressors is generally more aerodynamically sensitive than in turbines and introduction of a purge flow may be more penalizing. It is important to understand the impact such a flow may have on the primary gas path flow of a compressor and the downstream combustion system aerodynamics. This paper presents a preliminary investigation into the effects of a purge flow which enters the main gas path immediately upstream of the high pressure compressor outlet guide vane (OGV) row. Initial, simplified, CFD predictions clearly demonstrated the potential of the purge flow to negatively affect the OGV/pre-diffuser and alter the inlet conditions to the combustion system. Consequently, an experimental assessment was carried out using an existing fully annular, isothermal test facility which incorporated a bespoke 1.5 stage axial compressor, engine relevant outlet guide vanes, pre-diffuser and downstream combustor geometry. Using CFD to guide the process the test rig was modified to allow a metered airflow to be introduced upstream of the outlet guide vanes. Importantly the flow was directed up the face of the rotor such that it picked up a representative swirl component prior to injection into the main gas path. The experimental data confirmed the CFD results and importantly demonstrated that the degradation in the combustor inlet flow resulted in an increased combustion system loss. At the proposed purge flow rate, equal to ∼1% of the mainstream flow, these effects were small with the system loss increasing by ∼4%. However, at higher purge flow rates (up to 3%) these effects became notable and the OGV/pre-diffuser flow degraded significantly with a resultant increase in the combustion system loss of ∼13%.

Copyright © 2017 by Rolls-Royce plc



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In